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Instabilities due to a vertically stratified horizontal magnetic field (magnetic buoyancy 
instabilities) are believed to play a key role in the escape of the Sun's internal magnetic 
field and the formation of active regions and sunspots. In a star the magnetic diffu- 
sivity is much smaller than the thermal diffusivity and magnetic buoyancy instabilities 
are double-diffusive in character. We have studied the nonlinear development of 
these instabilities, in an idealized two-dimensional model, by exploiting a nontrivial 
transformation between the governing equations of magnetic buoyancy and those 
of classical thermosolutal convection. Our main result is extremely surprising. We 
have demonstrated the existence of finite-amplitude steady convection when both the 
influential gradients (magnetic and convective) are stabilizing. This strange behaviour 
is caused by the appearance of narrow magnetic boundary layers, which distort the 
mean pressure gradient so as to produce a convectively unstable stratification. 

1. Introduction 
One of the key problems in solar physics is to explain the means by which the Sun's 

interior magnetic field, which is predominantly azimuthal, escapes and subsequently 
emerges at the solar surface, thereby giving rise to sunspots and active regions. The 
most likely candidate for the initial disruption of the field is the instability mechanism 
known as magnetic buoyancy (see, for example, the reviews by Hughes & Proctor 
1988; Hughes 1992), which is explained in detail below. The density of a magnetic gas 
is influenced both by the temperature and by the magnetic field, through the magnetic 
pressure. Both of these quantities diffuse and so the problem is of a double-diffusive 
nature. In their most natural form the equations are not those of classical double- 
diffusive convection; however, as shown by Spiegel & Weiss (1982), they can be 
made so by a suitable transformation. Thus magnetic buoyancy is another important 
double-diffusive process, joining many others that have been identified in a range of 
fields, including oceanography, geology, other astrophysical contexts and engineering 
(e.g. Huppert & Turner 1981). The most intensively studied double-diffusive system 
is thermosolutal (or thermohaline) convection, in which the fluid density depends 
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on heat and solute concentrations; the ratio of the solutal to thermal diffusivities, 
denoted by z = K J K ,  typically is small (= 1/80 for salt in water). Recent numerical 
studies have revealed a wealth of fascinating nonlinear behaviour associated with this 
system (e.g. Moore & Weiss 1990). 

Our aim in this paper is to study two-dimensional double-diffusive convection 
driven by magnetic buoyancy. We do this by investigating thermosolutal convection 
and exploiting the transformation of Spiegel & Weiss. It should be stressed that 
the identification of the two systems is not trivial; in thermosolutal convection 
the thermal and solutal gradients are, in some sense, independent, whereas, for 
magnetic buoyancy, variations in the magnetic field directly affect the temperature. 
Consequently, the physics of the magnetic system is more complicated than that of 
thermosolutal convection and is indeed somewhat surprising. 

Putting aside diffusive considerations for the moment, the basic mechanism of the 
magnetic buoyancy instability of a stratified horizontal magnetic field is readily seen 
from a simple parcel argument (e.g. Acheson 1979). Suppose an atmosphere is in 
hydrostatic equilibrium with the pressure, density and magnetic field dependent only 
on height. Now suppose that a flux tube (or gas parcel) with magnetic field B ,  gas 
pressure p and density p is raised slowly, without bending, from a height z to a height 
z + dz. Let '6' denote the changes in the internal properties of the tube and 'd' the 
changes in the external atmosphere. 

Conservation of mass and magnetic flux of the tube leads to the relation 

and conservation of its specific entropy gives 

where y = cp/c ,  is the ratio of specific heats (for a perfect monatomic gas y = 
5/3). The tube will adjust rapidly to being in total pressure equilibrium with its 
surroundings; the magnetic pressure is given by B2/2p0 and so this leads to the 
relation 

B B 
6 p  + -6B = dp + -dB. 

PO PO 
The tube will continue to rise, showing the atmosphere to be unstable, if 6 p  < 
dp .  Manipulation of equations (1.1)-(1.3) thus leads to the following criterion for 
instability: 

where M 2  = B2/pop  is the ratio of the square of the Alfvkn speed ( B 2 / b p )  to 
the square of the isothermal sound speed ( P I P ) .  The right-hand side describes the 
familiar convective stratification of the atmosphere; this is a stabilizing influence if 
pp-Y increases with height. The left-hand side reflects the influence of the magnetic 
field stratification, with stability if B / p  increases upwards. In essence, a magnetic field 
that decreases upwards can support more of the atmosphere than would be possible 
in its absence, leading to a degree of top-heaviness. 

Thus it is gradients of entropy pp-7 and B / p  that affect the density, whereas the 
quantities that diffuse are the magnetic field B and the temperature T. The problem 
as it stands, therefore, is not in standard double-diffusive form; it can however be 
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made so by recognizing that the independent perturbation variables analogous to T 
and S (the solute concentration) in thermosolutal convection are, essentially, B and a 
special linear combination of B and T (Spiegel & Weiss 1982 and $2). This unusual 
choice of variables leads to some significant differences in the physics of the two 
systems. 

The most interesting aspect in which they differ concerns the behaviour when 
both gradients are stabilizing. For thermosolutal convection, when dT/dz > 0 
and dS/dz < 0, there are no instabilities of any kind, as one would expect; any 
perturbation to the static state will simply die away. However, if the ratio of magnetic 
to thermal diffusion (which we shall also denote by z) is sufficiently small, then 
having d(ppP)/dz > 0 and d(B/p)/dz > 0 does not guarantee such straightforward 
behaviour for the magnetic system. Hughes (1985) demonstrated, by a linear analysis, 
the existence of oscillatory instabilities with two stabilizing gradients. The chief 
objective of this paper is to extend this work by investigating the nonlinear behaviour 
in this regime. Da Costa, Knobloch & Weiss (1981) performed a detailed analysis of 
the bifurcations and nonlinear solutions of thermosolutal convection by studying a 
fifth-order modal truncation of the governing equations ; this system is quantitatively 
accurate to second order in amplitude and qualitatively accurate for larger amplitudes. 
On transforming to the magnetic problem, this truncated system predicts the surprising 
existence of a steady, sub-critical finite-amplitude solution when both gradients are 
stabilizing. This result can also be inferred from the analysis of Proctor (1981) who, 
by perturbation techniques, studied steady thermosolutal convection in the limit of 
very small z. Our main concern has been to investigate in depth, by solution of the 
full nonlinear governing equations, the behaviour in the stable-stable regime. The 
key result of the paper is not simply to confirm that steady convection does indeed 
occur, even when both gradients are ‘stabilizing’, but, more importantly, to provide 
an explanation for the physical processes responsible. We are only concerned with 
the case when z, the diffusivity ratio, is small; this is essential for the occurrence of 
the unusual behaviour outlined above and, furthermore, is the relevant astrophysical 
regime. 

The layout of the paper is as follows. The governing equations and the relation 
between the magnetic and thermosolutal problems are described in $2. Section 3 
contains a brief summary of the linear results; $4 describes the fifth-order system. The 
fully nonlinear solutions are discussed in $5, together with the physical explanation 
of this strange instability. Appendix A contains the detailed derivation of expressions 
(2.19) and (2.20) for B / p  and pp-)’. Appendix B considers briefly the effect of changing 
the lateral boundary conditions. 

2. Mathematical formulation 
The aim of this section is to formulate the governing equations of thermosolutal 

convection and magnetic buoyancy and to explain the relationship between the two 
systems. For thermosolutal convection we shall study the standard idealized model of 
two-dimensional convection in a horizontal layer confined between two planes, z = 0 
(bottom) and z = d (top). In the Boussinesq approximation the density is taken to be 
p = PO( 1 - ET + P S ) ,  where T is the temperature, S is the solute density and E, P > 0 
(throughout, a subscript 0 indicates a representative value). In equilibrium, when the 
fluid is at rest, T and S are given by 

T = To + AT(l - z/d), S = So + AS(l - z/df. (2- 1) 
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If AT, AS are both positive, the layer is bottom-heavy and heated from below. For 
the perturbed state we introduce a stream function Y(x,z) such that the velocity 
u = (-a,Y,O,a,Y) and set 

(2.2) T = To + AT[l - z / d  + O(X,Z)] ,  S = So + AS[1 - z / d  + C(X,Z)] .  

After scaling lengths with d and times with d2/K,  where IC is the thermal diffusivity, 
the dimensionless governing equations can be written as 

aLv2y + J ( Y , V ~ Y )  = a%a,o - aR,axz + g v 4 ~ ,  (2.3) 
(2.4) 
(2.5) 

a,@ + J ( Y , O )  = a,Y +v20, 
a,c + J (Y ,  c) = a,Y + zv2z. 

Here 
gbATd3 gpASd3 

rJ = V / K ,  z = K J K ,  & = , R,=-, 
KV KV 

where K ,  is the solutal diffusivity, v is the kinematic viscosity, & and R, are the 
thermal and solutal Rayleigh numbers. With this convention, & positive (negative) 
denotes a thermally unstable (stable) gradient; R, positive (negative) is solutally stable 
(unstable). We restrict attention to the region 0 < x < A, 0 < z < 1 and adopt the 
simplest boundary conditions, so that 

Y = O ,  a;!P=o, o=o, z = o  ( z = O , l ) ,  (2.7a) 
Y =o, ;;Y =o, a,@ =o, a,z = o  (x=o,;1). (2.7b) 

For our investigations of magnetic buoyancy we consider perturbations to a static 
equilibrium state with a stratified horizontal magnetic field, B = B(z)j. We employ a 
modified version of the Boussinesq approximation, as conceived by Spiegel & Weiss. 
The usual Boussinesq assumption holds concerning the smallness of the ratio of 
the layer depth to all scale heights; the difference is that it is not the perturbation 
in gas pressure that is assumed negligible, but rather the perturbation in the total 
pressure (gas + magnetic). As with the thermosolutal equations above, we shall 
restrict our attention to two-dimensional motions in the (x , z)-plane; such motions 
simply interchange magnetic field lines, which always remain in the y-direction. The 
description below of the governing equations is self-contained though brief; more 
details can be found in Spiegel & Weiss (1982). A formal derivation of the equations 
describing magnetic buoyancy in the Boussinesq approximation has been given by 
Corfield (1984). 

Combining the magnetic induction equation with the continuity equation gives 

d,B + u * V B  +(a,Y)B/H,  = qV2B, (2.8) 

where B = B(x,z)j, H ,  is the density scale height and q is the magnetic diffusivity. 
Alternatively, this may be written as 

where 6 p m  is the perturbation in the magnetic pressure and a = (Bi/b)(d/dz) ln(B/p), 
which is constant under the assumptions of the Boussinesq approximation. 

Using the fact that 6 p  = -6p,,  the energy equation can be written as 

2 Dt (6T + $) +pa,Y = KV26T, (2.10) 
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where 6T is the perturbation in temperature, cp is the specific heat at constant pres- 
sure and p = ( To/y)(d/dz) ln(pp-') (constant, within the Boussinesq approximation). 
Equations (2.9) and (2.10) may be combined into standard advection4iffusion form: 

+ f l * ~ ? ~ ! P  = d 2 6 T * ,  
D6 T' 

Dt 
where 

(2.11) 

(2.12) 

and where, for the magnetic problem, z = V / K .  On employing the usual scaling of 
lengths with d and times with ~ * / I c ,  and defining Z and 0 by 

6pm = -Cad, 6T' = -@Pad, (2.13) 

Finally there is the momentum equation which, in the Boussinesq approximation, 

po (a,u + (u V)u)  = - g p t  - vn + povv2u, (2.14) 

where n = p + pm is the total pressure. Then the y-component of the curl of (2.14) is 
identical to equation (2.3) provided that we define 

equations (2.9) and (2.1 1) become (2.5) and (2.4) respectively. 

takes the form 

(2.15) 

Thus the governing equations of magnetic buoyancy can be transformed into those 
of thermosolutal convection and, at least in a formal sense, the systems may be 
regarded as being identical. However, this identification is made possible only by the 
introduction of somewhat unusual variables and Rayleigh numbers (particularly 0 
and &) and, consequently, the physics of the two systems differs in some significant 
respects. In order fully to understand convection driven by magnetic buoyancy we 
must relate the natural variables and Rayleigh numbers to those defined by equations 
(2.13) and (2.15). 

For magnetic buoyancy, the most natural Rayleigh numbers are defined by 

(2.16) 

Rt, the natural analogue of & for thermosolutal convection, measures the degree of 
super- or sub-adiabaticity; < 0 (> 0) implies convective stability (instability). & is 
a measure of the magnetic stratification; as shown in the introduction, & > 0 (< 0) 
denotes a magnetically stable (unstable) atmosphere. Rt and & are related to & and 
R,, defined by (2.15), as follows: 

(2.17) 

The natural variables with which to describe magnetic buoyancy are the stream 
function Y (as in thermosolutal convection), 6 p m  and 6T. In dimensionless form 
(after scaling pressure with rcvpo/gd3 and temperature with ~cvTo/gd~) 6 p ,  and 6 T  
are related to 0 and Z as defined in (2.13) by 
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The transformations (2.17) and (2.18) are obviously singular when z = 1 and cannot 
be defined there; however, no problems arise in the limit as z 3 1. Although, for 
example, 0(1) values of R, and & lead to very large values of 1&1 and these 
are related by & = R, (from (2.17)). As we shall see in $3 (equations (3.2) and (3.3)) 
& k! R, implies proximity to the stability boundary (when z + 1) and hence C and 
0 will indeed take 0(1) values, as expected for a problem with 0(1) values for R, 
and & (but not obviously for one with very large values of 

The final step in the formulation of the problem is to specify the overall strati- 
fication, arising from the sum of the equilibrium state and the perturbations. This 
is more complicated than for thermosolutal convection where, given 0 and C, it is 
trivial to construct the total temperature and solute fields. Here the most economical 
description is in terms of B / p  and pp-7; as described in detail in Appendix A these 
(dimensionless) fields are given by 

B / p  = const. + &(z - C) = const. + I&lxb,  (2.19) 

and lR,l). 

say; 

say. In our descriptions of the nonlinear evolution, in $5, we shall use the variables 
x b  and x p  to describe B / p  and pp-Y respectively. 

3. Linear theory 
The linear theory of thermosolutal convection has been extensively studied (e.g. 

Turner 1973 and references therein). Linearization of the governing equations (2.3)- 
(2.5), followed by substitution of Fourier modes for Y ,  0 and C, leads to the following 
cubic dispersion relation for the growth rate p :  

p 3  +( 1 +a +z)s2p2 + [(a + .~+oz)s~  - (& - R , ) O ~ ~ / S ~ ] P + C Z S ~  +(Rs -z&)0l2 = 0, (3.1) 

where 1 and nn (integer n )  are the horizontal and vertical wavenumbers and s2 = 
l 2  + n2z2. (The most unstable modes always have the simplest possible structure in 
the z-direction, i.e. n = 1.) The stability boundary for direct modes (when p = 0) is 
thus given by 

and for oscillatory modes (at a Hopf bifurcation, when p = +io with o real) by 
& = R f )  = R,/z  + S 6 / l 2 ,  (3.2) 

(3.3) 

provided that a( 1 - z)& > (a + z)(s6/12).  The regions of linear stability and instability 
in the (&,R,)-plane, together with the line of neutral buoyancy, are sketched in 
figure l (a) .  

Using the transformation (2.17) the stability boundaries for the magnetic buoyancy 
problem become 

R, = Rr) = &/z + s6/12 (direct modes); (3.4) 

(' -k 4- - s6 (oscillatory modes). (3.5) 
a 12 

& +  
(1 + z + a - y )  

Y(1+ 4 
R, = R,'O' = 



Strange consequences of magnetic buoyancy 389 

FIGURE 1. Sketches showing the regimes of linear stability in (a) the (R,,&)-plane, and (b )  the 
(&,&)-plane. The lines of direct and Hopf bifurcations are marked, together with the line of 
neutral buoyancy (& = R, in (a), Rt = y& in (b)) .  

The stability diagram, for the case of z < y - 1 - 0, is sketched in figure l(b). Also 
marked is the stability boundary in the absence of diffusion (& = y&, from (1.4)); 
note that for this case the fourth quadrant (Rt < 0, & > 0) is stable. 

Direct instability occurs primarily in the third quadrant (& < O,& < 0) and, 
physically, is analogous to the salt-fingering instability of thermosolutal convection. 
When & and &, are both negative the atmosphere is subadiabatically stratified 
and has B / p  decreasing with height. The influence of the stabilizing temperature 
gradient on infinitesimal perturbations is diminished by the large thermal diffusivity, 
whereas the destabilizing magnetic field gradient is affected little by the weak magnetic 
diffusivity. 

Oscillatory instability (overstability) can occur in both the first and fourth quad- 
rants. When Rt and &, are both positive (a superadiabatic atmosphere and B / p  
increasing with height) the instability mechanism is similar to that occurring in ther- 
mosolutal convection when & and Rs are both positive. The large thermal diffusivity 
lessens the destabilizing influence of the superadiabatic stratification whereas the small 
magnetic diffusion maintains the stabilizing magnetic gradient; consequently a fluid 
parcel (or flux tube) displaced upwards can find itself denser than its surroundings. 
The parcel thus falls, with diffusion causing it to return to its original level with a 
higher density than it had initially. It then overshoots below its equilibrium position, 
with repetition of this process leading to growing oscillations. As shown in figure l(b), 
and as expected on physical grounds, if the atmosphere is sufficiently superadiabatic 
(Rt large enough) then a parcel displaced upwards will, despite the thermal diffusion 
and the stabilizing B / p  gradient, find itself less dense than its surroundings and will 
continue to rise, i.e. there is a direct instability. 

By far the most surprising feature of the magnetic problem is the appearance, for 
z + G < y - 1 = 2/3, of overstability in the fourth quadrant of the (&,&)-plane 
(Rt < 0, &, > 0) ;  i.e. instability with two stabilizing gradients (Hughes 1985). For 
this instability there is no simple analogy to be drawn with thermosolutal convection; 
there, as one would expect, no instability is possible when both the heat and solute 
gradients are stabilizing (& < 0, Rs > 0). The essential difference between the two 
systems is that whereas in thermosolutal convection the solutal and thermal fields are 
independent, for magnetic buoyancy the magnetic field has a direct influence on the 
temperature; indeed, as we have seen in $2, it is 6pm and the hybrid quantity 6T', 
defined by (2.12), that are independent. The physical mechanism behind the instability 
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is again best explained by means of a parcel argument. In the absence of all diffusion 
a raised fluid parcel will be hotter than its surroundings if (y - 1)& + yR, > 0 (see 
Hughes 1985). The parcel is of course denser than its surroundings (both gradients 
being stabilizing) and, with no diffusion, will oscillate about its equilibrium position. 
However, with finite thermal diffusion the parcel will transmit heat to its surroundings 
when displaced upwards; it will thus return to its original position cooler, and hence 
denser, than it was initially, and will overshoot. The process is then repeated, leading 
to growing oscillations. It is the aim of the following sections to explore the nonlinear 
behaviour in the regime where both gradients are stabilizing. 

4. A fifth-order truncated model 
We first construct a low-order model that allows us to study the relevant bifurcation 

structure analytically. For this purpose we begin with the thermosolutal problem, 
which has been investigated in some detail (Da Costa et al. 1981). It is convenient to 
introduce the scaled quantities 

4n2 l 2  l 2  
s2 ' S6 S6 

m=- t ' = s 2 t ,  r , = - & ,  Is=-% 

Then we adopt a minimal Fourier representation of the variables, so that 

Y = 23/2 (;) sin ~x sin nz a(t*) ,  (4.2) 

2312 1 
0 = ~ cos 2x sin nz b(t*) - - sin 2nz c(t'),  

S n 
2312 1 

Z = - cos lx  sin nz d(t') - - sin 2nz e(t'),  
S n 

and obtain the truncated fifth-order system 

b = a[-a + r,b - rSd, 
b = -b + a(1- c ) ,  
t =  to(--^ +ab),  
d = -zd + a(1 - e ) ,  
e = a(-ze + a d ) ,  

where the dots indicate differentiation with respect to t' (Veronis 1965; Da Costa et 
al. 1981). 

The stability of the trivial solution a = b = c = d = e = 0 has already been 
discussed. The system possesses a symmetry (a, b7 d )  + (-a, -b, -& (c, e)  + (c,e), so 
direct modes set in at a pitchfork bifurcation when r, = r t ) ,  while oscillatory modes 
set in at a Hopf bifurcation when ra = r t ) ,  where 

(4.10) 

from (3.2) and (3.3). The system (4.5)-(4.9) possesses a non-trivial steady solution 
satisfying the relationship 

(4.11) 
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Near the pitchfork bifurcation at r t )  we therefore have 

(4.12) 

and there are subcritical steady solutions (with ra < r t ) )  provided rs > z3/(l - z2). In 
that case there is a turning point (corresponding to a saddle-node bifurcation) on the 
steady branch at r, = r,m'", where 

a ' = [(I - z2)ll2 + (~r,)~/~]~. (4.13) 

Now for ra > 0 the Hopf bifurcation only occurs if z < 1 and rs > ~ ~ ( 1  + a)/ 
a(1 - T) > z3/(l  - z2). So there are always subcritical steady solutions if there is an 
oscillatory bifurcation. Moreover, it can be shown that 1 < rp < r t ) ,  that rp = r t )  
when rs = [(l + ~)~z(l + z)]/[a2(1 - z)], and that 

(4.14) 

Figure 2(a) shows the location of the bifurcations at $1, r$) and rp in the (rs,ra)- 
plane. The Hopf bifurcation at r c )  is supercritical unless rs is fairly large, and the 
oscillatory branch terminates in a heteroclinic bifurcation (at r a ) )  on the unstable 
portion of the steady branch, as indicated in the schematic bifurcation diagram in 
figure 3(a). 

These results can be translated to describe magnetic buoyancy. As in equation 
(2.17), we set 

rp - z(a + I)rjP)/(a + z) as r, + 00 . 

rt = ra - ( y  - l)rs/(r - 7) 3 r b  = y(1 - z)rs/(y - 7) 7 (4.15) 

and we assume that (a + z) < (y - 1). Then there is a pitchfork bifurcation at r f  = r:e) 
and a Hopf bifurcation at rt = ry'. Once again, there are subcritical steady solutions, 
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FIGURE 3. Bifurcation diagrams for the fifth-order model system: sketches showing 2, the mean 
square value of a, for steady and periodic solutions. ( a )  Behaviour as r,  is increased for fixed 
r8 > T*( 1 + .)/a( 1 - 7). ( b )  The same, but as rb  is increased for a fixed negative value of rf. The 
pitchfork bifurcation occurs for rb  < 0. Filled (open) circles denote local (global) bifurcations. 

provided that rb > y z 3 / ( y  - z)(l  + z), with a turning point at 

(4.16) 

Thus ry is negative for r b  sufficiently large, and 

(4.17) 

Moreover, ry < r p ) ,  so the bifurcation set is as shown in figure 2(b) and there are 
both steady and oscillatory nonlinear solutions in the quadrant where there are two 
stabilizing gradients. 

Near the codimension-two point at rb  = yz*(l+o)/a(y-z), rt = l+yz(l+o)/a(y-z), 
where r f '  = rp ) ,  the bifurcation structure as rf is increased for fixed rb is similar to 
that shown in figure 3(a).  For rb  sufficiently large, both the turning point and the 
Hopf bifurcation take place with rf < 0, while the pitchfork bifurcation follows much 
later with rt - r b / Z .  Figure 3(b)  shows the bifurcation structure for the model system 
when rb is varied for fixed rt < 0. There is no stationary bifurcation with Tb > 0 
but for r b  large and positive there are two steady solutions, one stable and the other 
unstable. These solutions merge in a saddle-node bifurcation at the turning point, 
while the oscillatory solutions die in a heteroclinic bifurcation. For rb < 0 there is 
another steady branch (in the 'salt-fingering' regime) with an amplitude that tends to 
an asymptotic value u2 - y z / ( y  - 1 - z) as rb  + -a. 

This truncated model suggests that subcritical steady convection does indeed occur 
when Rf < 0 and & > 0, contrary to naive expectations. Furthermore, the steady 
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solutions have much greater amplitudes than those on the short oscillatory branch. It 
is known, however, from comparisons between solutions of equations (4.5)-(4.9) and 
those obtained by numerical integration of the full partial differential equations, that 
the fifth-order system exaggerates the extent of subcriticality. So we have to solve the 
full problem. 

5. Steady convection with two stabilizing gradients 

The fifth-order system of ordinary differential equations discussed in 94 provides a 
good qualitative guide to the nonlinear behaviour of the partial differential equations 
(2.3)-(2.5); however, away from the immediate neighbourhood of bifurcation points it 
is not quantitatively accurate. Thus, although we can be sure that steady convection 
occurs for & < Rt), we cannot infer the value of R F .  Indeed, as stated above, 
it is well known that the fifth-order system exaggerates subcritical behaviour for 
thermosolutal convection; for the full partial differential equations R F  is always 
found to exceed R?). The key question is whether R F  is sufficiently small that, 
after translation into the magnetic problem, steady convection can occur with R, < 0, 
Rb > 0 and, if so, why? To provide an answer we need to solve the full governing 
equations (2.3)-(2.5). We use a numerical code kindly supplied by Dr D.R. Moore, 
which is identical with that described by Moore, Weiss & Wilkins (1991). To 
facilitate the computation, all solutions are constrained to be point-symmetric, but 
this restriction does not affect the issues that concern us here. Although there have 
been several detailed numerical investigations of thermosolutal convection, none of 
them are of direct relevance to the present problem. From the analysis of @3,4 we 
know that the unusual behaviour we are seeking certainly requires (r + z < y - 1, 
whereas in numerical simulations of thermosolutal convection it has however been 
customary to take r~ = 1, thus violating this inequality. The results to be presented 
here go beyond those of Huppert & Moore (1976) in using smaller values of (r and z 
and also in pinning down the dependence of R,m'n on R,. 

Guided by the fifth-order system, which suggests the existence of strange behaviour 
for (r + z < y - 1 = 2/3, we decided, initially, to take z = (r = 0.1. The aspect ratio 
of the computational domain was taken to be 1.5, with N ,  = 96 grid points in the 
horizontal direction and N ,  = 64 points in the vertical (though the assumption of 
point-symmetry means that only half of these are used). Identifying the location of the 
turning point at the onset of steady convection is a lengthy though straightforward 
numerical procedure, accomplished by following the steady branch as &, is decreased 
at fixed R,; &, is decreased in steps of magnitude I, where I depends on the value of 
& (see the caption to table 1). For z = r~ = 0.1 the turning point is always located 
in the first quadrant of the (&,R,)-plane (&, R, > 0) and thus for these values of the 
diffusivity ratios there is no steady convection in the fourth quadrant. The values of 
R, and &, (also & and R,) at the turning point are contained in table 1. As global 
measures of the nonlinear behaviour, table 1 also contains the values of the thermal 
and solutal Nusselt numbers, defined by 

N,  = 1 -1-' d,O(x,O)dx, 

5.1. Subcritical convection at small z 

N ,  = 1 - 1-' d,Z(x,O)dx ; (5.1) di li 
N ,  is seen to exceed N ,  considerably. In figure 4 the turning point values are plotted 
in both the (Rs, &)- and (Rb, R,)-planes, together with the linear stability boundaries 
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Rt 
1000 
2 000 
3 000 
4000 
5 000 
6 000 
7000 
8000 
9 000 

10 000 

& 
330" 

3 loo+ 
6 500t 

10 400t 
14 500* 
19 500$ 
25 OOO' 
30 000' 
37 000' 
43 000' 

Ra 
1147 
3 378 
5 889 
8 622 

1 1 444 
14 667 
18 111 
21 333 
25 444 
29 111 

RS 
345 

3 238 
6 789 

10 862 
15 144 
20 367 
26111 
31 333 
38 644 
44911 

N4 Ns 
1.46 4.83 
2.24 6.18 
2.66 7.94 
2.98 8.87 
3.42 10.25 
3.65 10.95 
3.86 11.56 
4.24 12.78 
4.35 13.05 
4.65 13.99 

TABLE 1. Values of &, & (equivalently &, R,) at the end of the steady branch, together with the 
Nusselt numbers N ,  and N,;  t = 0.1, u = 0.1. For a fixed &, & is decreased in steps of I until no 
steady solution is found, where I = 10 (o), 1 = loo(?), I = 500($), I = 1 000(*). 

1.5 
(X 104) 

1 .o 

0 

-0.5 

-1.0 

t 4 

Rb 
RGURE 4. (a) Important regimes in the (R,,&)-plane delineated for the case of u = 0.1, z = 0.1. 
The solid lines show the linear stability boundary; the dotted line denotes & = 0; the dashed line 
is the prediction of RF from the fifth-order system; the crosses (joined by a dash-dotted line) are 
the values of RP calculated from the full PDEs. (b)  As in (a), but for the (&,&)-plane. Note that 
Kmi" calculated from the full PDEs is always positive. 
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Rf 
0 

-1 000 
-2 000 
-3 000 
-4 000 
-5 000 
-6 000 

& 
9 000 

40 000 
50 000 
59 000 
68 000 
76 000 
84 000 

& 
11 777 
15 244 
18 305 
20 959 
23 614 
25 863 
28 112 

Rs 
29 177 
40 244 
50 305 
59 359 
68 414 
76 463 
84 512 

No Ns 
3.92 29.86 
4.25 32.31 
4.54 34.53 
4.12 35.89 
4.95 37.65 
5.07 38.45 
5.15 38.99 

TABLE 2. Values of R,, & (equivalently &, R3) at the end of the steady branch, together with the 
Nusselt numbers No and N,;  z = 0.015, o = 0.1. For a fixed &, & is decreased in steps of lo00 
until no steady solution is found. 

and the prediction of RF (Rim'") from the fifth-order system. It is seen that RF 
( R F )  comfortably exceeds Rf) (RP)) - and hence, of course, R F  (Rim'") from the 
fifth-order system. 

The result (4.13) shows clearly that, for the fifth-order system at least, RF is 
minimized as z + 0; thus we reduced the value of z to z = 0.015, still with t~ = 0.1. 
Reducing z leads to a reduction in the thickness of the solutal boundary layers, and 
hence ensuring resolution of the boundary layers requires an increase in the number of 
grid points; we were confident of our results only for the high resolution of N ,  = 192, 
N ,  = 128. The convergence of such runs to a steady state, even starting from a 
nearby steady state, is painfully slow, and hence evaluation of R P  is an incredibly 
long-winded business; I ,  the step-size for decreasing & is taken to be 1OOO. The 
good news though is that with this reduced value of the magnetic diffusivity, steady 
convection does indeed extend into the stablestable quadrant of the (&, R,)-plane. 
The values of 4 and & at the turning point are contained in table 2 and are also 
plotted in figure 5 ;  just as when z = 0.1 (figure 4) RP (R,m'") exceeds Rj") (Rf)). 

Contour plots of Y ,  the voriticity o, T and S for the steady solution with 
& = 50000, R, = -2000 (& = 18305, R, = 50305) are shown in figure 6.  In 
addition we show in figure 6(e) the normalized density field 

p = RsS - &T. 

Solid (dotted) contours indicate positive (negative) values and the zero contour is 
dashed. At the bottom boundary ( z  = 0), p = -;(& - R,) while at the top boundary 
(z = l), p = ;(& - Rs). Thus the basic density stratification is stabilizing (dpldz < 0) 
for the values of & and R, considered here. The domain is occupied by a single 
eddy rotating clockwise. Boundary layers form for both the thermal and solutal fields 
with the solutal boundary layers O(z1/2) thinner than those of the temperature field. 
These are seen clearly in figure 7, which shows the horizontally averaged temperature 
and salinity distributions as functions of height. (The central region has an almost 
uniform solute concentration ( S  k: 0) and so in figure 6(d)  we have chosen not to plot 
the zero contour.) The density field, given by (5.21, has a more complicated structure 
than either T or S .  Despite the fact that the density stratification is bottom-heavy, the 
double-diffusive processes lead to plumes of rising light fluid and falling heavy fluid. 
The consequent variation of p with x generates vorticity with the spatial structure 
shown in figure 6(b) .  

It is easy to see why subcritical steady solutions appear in the thermosolutal problem 
when z << 1. If vigorous motion is established, the stabilizing solutal stratification 

(5.2) 
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will be confined to narrow boundary layers of thickness 6, m ( z / U ) ~ / ~ ,  where U is a 
typical dimensionless velocity, leaving the bulk of the fluid free for convection to be 
driven by the supercritical thermal gradient. This argument can be made more precise 
if we suppose that r~ >> 1, so that the Reynolds number is small. Then the equation 
of motion can be linearized and the velocity split into two components, driven by 
solute and heat respectively (cf. Galloway, Proctor & Weiss 1978). We suppose that 
these components are driven by narrow solutal and thermal plumes, with a core of 
uniform vorticity. Thus we set u = us + ut and consider the vorticities as = V x us 
and at = V x u,. To estimate these we need only consider a one-dimensional problem 
with 

and plumes of thickness 6,. It follows that o, w -Rs6, and, similarly, that oc w &6,, 
where 6, is the thickness of the thermal plumes (Galloway et al. 1978). For convection 
to occur we require that llutll > IIusll, with some suitably defined norm, so that 
& 2 (6,/6,)R,; but (6,/6,) m r1l2, so we expect to obtain nonlinear solutions if 
& > R F ,  where 

R F  w d 2 R S .  (5.4) 
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. .  

FIGURE 6. Contour plots of (a) Y ,  (b)  w, (c) T ,  (d )  S and (e) p ,  for & = 18305, = 50305, 
z = 0.015, 0 = 0.1. Positive (negative) contours are shown as solid (dotted); the zero contour is 
dashed. 

A similar result can be obtained from energy considerations, if z1/’RS >> 1 (Proctor 

(5 .5 )  

1981). In the alternative limit, when rl/’ >> Rs >> 1, Proctor found that 

R P  = 811’ + const x ( T ’ R , ~ ) ’ / ~ .  

We are only interested in the regime where z << 1 and &“Rs >> 1. From the numerical 
results contained in table 2 we find that R F  = 2.3z’/’Rs and thus, by comparison 
with equation (4.13), we see that the degree of subcriticality is indeed reduced from 
that predicted by the truncated model of $4, by a factor of O ( T ’ / ~ ) .  On translating the 
thermosolutal result into magnetic buoyancy we obtain 
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FIGURE 7. Horizontally averaged T and S versus height, for the solution shown in figure 6. 

z Rt 4l Rs N* N3 

0.04 5000 25833 50833 5.17 24.19 
0.1 11000 33222 52222 4.85 14.59 

TABLE 3. Turning-point values at a fixed value of R,, (R,, = 50000), cr = 0.1 and for three different 
values of z. R, is decreased in steps of 1000 until no steady solution is found. 

0.015 -2000 18305 50305 4.54 34.53 

It can be seen that expression (5.7) is identical with (4.17) for t << 1 and & >> 1, and 
thus for the magnetic buoyancy problem, in this limit, the predictions of &mi" from 
both the fifth-order system and the full equations are the same; the zl/* contribution in 
(5.6) becomes insignificant after translation into the (&, R,)-plane. With our numerical 
simulations we are certainly not in the parameter regime where (5.7) is valid and so, 
as already pointed out, R F  considerably exceeds the prediction of the fifth-order 
system. From (5.6) we see that &mi" can only be negative for zl/* 5 ( y  - 1)/2.3 y or 
z 2 0.03; with our value of z = 0.015 we are comfortably in the required regime, 
although both terms in (5.6) are still of comparable magnitude. 

Our results confirm the linear dependence of R F  on & (cf. Huppert & Moore 
1976). However, verifying numerically the z dependence of Rtmin is difficult. Expression 
(5.6) is derived on the assumption that z1/2 << 1 and it is simply not feasible to conduct 
a series of numerical experiments for a range of z satisfying this inequality. We have 
therefore just calculated the turning point values for & = 50000 with z = 0.015, 0.04 
and 0.1; the results are contained in table 3. Using the results for our smallest value 
of z (z = 0.015) we may amend (5.6) to give the more specific expression 

= 4500 + (2.3~'~' - -)& (Y - 1)  
Y 

In figure 8, where the abscissa is In z, the dashed line depicts the function ln(2.3&) + 
0.5 In z; the three points marked with crosses are the three values of - 4500 + 
(y - l )&/y)  obtained from the simulations. We see that the agreement is reasonable 
for z ,< 0.04; it is, not surprisingly, rather poor for the larger value of z = 0.1, where 
the region of subcritical convection is somewhat greater than predicted by (5.8). 
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FIGURE 8. Comparison of the predictions of expression (5.8) with the results from the full PDEs. 
The abscissa is ln 7; the dashed line depicts the function ln(2.3&) + 0.5 In z, and the crosses are the 
values of - 4500 + (y - l )&/y)  obtained from the simulations for z = 0.015, 0.04 and 0.1 
(a = 0.1, y = 5/3). 

FIGURE 9. Contour plots of (a )  Xb ( B / p )  and ( b )  xp (pp-7) for the same solution 
as shown in figure 6 (R ,  = -2000, & = 50000). 

5.2. The physical explanation 
Subcritical thermosolutal convection with & > 0, R, > 0 and z small is relatively 
straightforward to understand. However, when the results are formally translated to 
describe convection driven by magnetic buoyancy, implying steady convection with 
Rt < 0 and & > 0, they become distinctly counter-intuitive. It is therefore absolutely 
essential that we provide a convincing physical explanation of this phenomenon. 

Figure 9 shows the contour plots of X b  ( B / p )  and xP (pp-Y), calculated using (2.19) 
and (2.20). The distribution of B / p  is essentially that of S whereas the contours of 
pp-Y are more complicated, arising from a linear combination of those of T and S .  
Figure 10 plots the profiles of the horizontal averages of B / p  and pp-? and it is these 
that shed the most light on __ what is happening. Obviously, via equation (2.19), the 
distribution with depth of B / p  is that of s; it is the more complicated profile of pp-y 
(given by (2.20)), with its double boundary layer structure, that reveals the source of 
the unusual behaviour under investigation. 

The magnetic pressure 6 p ,  is concentrated into very thin boundary layers in which 
6 p ,  increases sharply with height. For thermosolutal convection, the boundary layer in 
temperature is O ( T - ' / ~ )  thicker than that in solute; using the relation (2.12) we can see 
that, for small t, the thermal boundary layers for both thermosolutal convection and 
magnetic buoyancy are of comparable thickness. In the Boussinesq approximation, 
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FIGURE 10. Horizontally averaged Xb and xP as functions of height, for 

the solution shown in figure 9. 

variations in total pressure are small (i.e. 6p = --6p,); thus in the magnetic boundary 
layer we have the following balance : 

I d  1 d  
---6p NN ---6p, 
Po dz Po dz 

since d(6T)/dz is small, and hence 

1 - 7  d 
-6P Y d  dp---Jp=-- 

PO dz PO dz Po dz 

1 d  _- 

(5.9) 

(5.10) 

In the magnetic boundary layers therefore, there is a large gradient in pp-y. In 
fact, the thin outer boundary layers in pp-y are seen to be so exceptionally stable 
(d(pp-Y)/dz large) that the value of pp-y at the inner edge of the lower (upper) outer 
boundary layer 'overshoots' its value at the upper (lower) surface. To compensate, 
there is of necessity a negative (destabilizing) entropy gradient across the remainder - of 
the cell; this is such as to drive steady convection, with a characteristic profile of pp-7. 
Figure 10 shows clearly the dramatic extent of the distortion of the pp-7 profile. In the 
static state dxp/dz = y ( x p  = 0 at z = 0, xp = y at z = 1); in the final steady convective 
state the range of x p  is approximately 12 - i.e. 7 times the static variation. Thus, to 
sum up, we see that steady motion with two stabilizing gradients is made possible 
through the influence of the magnetic field on the convective stratification; this is 
dramatically different from thermosolutal convection, in which strong concentrations 
of solute in thin boundary layers do not have a profound effect on the temperature 
distribution. 

6. Conclusion 
We have investigated in detail nonlinear convection driven by magnetic buoyancy, 

for the case when the gradients of both B/p and pp-y are, in the absence of 
diffusion, stabilizing. Our method of attack has been to study classical double-diffusive 
convection (thermosolutal convection) and then to relate the results to magnetic 
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buoyancy via the transformation of Spiegel & Weiss (1982). The truncated fifth-order 
system of $4 suggests the counter-intuitive possibility of steady convection in the 
stable-stable regime, but cannot give quantitative results concerning the extent of the 
subcritical behaviour. By high-resolution numerical simulations of the full governing 
partial differential equations we have however confirmed that this strange behaviour 
really does occur; equally importantly we have provided a physical explanation as to 
why it occurs. The key feature is the formation of narrow magnetic boundary layers 
which influence the convective stratification so as to make these layers extremely 
stable; as compensation there results a superadiabatic gradient across the bulk of the 
cell, and it is this that drives the steady convection. 

Although these steady solutions are stable to point-symmetric disturbances that 
satisfy the boundary conditions (2.7), it is not obvious what will happen when those 
restrictions are relaxed. In Appendix B we describe nonlinear results obtained with 
periodic lateral boundary conditions, which require a different numerical code. We 
find that the same physical processes still operate, and that vigorous convection can 
still be found in the regime where both gradients are stable, although steady solutions 
give way to travelling waves. Thus we conclude that the mechanism is robust. 

We have considered only two-dimensional flows, with all variables dependent 
only on x and z ;  the fluid motions take place in the (x,z)-plane and the magnetic 
field is in the y-direction. This geometry then allows us to combine the studies of 
thermosolutal convection and magnetic buoyancy via the transformation of Spiegel 
& Weiss. However, there is no reason why the strange behaviour that we have 
identified should be peculiar to this two-dimensional geometry. Having identified 
the underlying physical mechanism, we can see that steady convection with two 
stabilizing gradients should also occur for general three-dimensional flows (though 
in this case there is no formal analogy with thermosolutal convection). Similarly, 
although the presence of horizontal boundaries is of course an essential feature, we 
do not regard our specific choice of boundary conditions as being of fundamental 
importance in causing the unusual behaviour. For instance, we would still expect to 
find the same effect if the vertical gradients of Y and 0, rather than their actual 
values, were set to zero in (2.7a), though the influence of the boundary layers might 
be less profound. 

It is interesting to note that in addition to the analogy exploited throughout 
this paper, that between thermosolutal convection and magnetic buoyancy, there is 
a similar formal relationship between thermosolutal convection and convection in 
binary fluids (Knobloch 1980). We plan to see how the strange behaviour we have 
unearthed for magnetic buoyancy relates to that system. 

Our primary motivation for studying magnetic buoyancy instabilities is to improve 
our understanding of the solar magnetic field. Observations of the surface magnetic 
field (see, for example, Stix 1989) imply that the Sun’s interior field is predominantly 
azimuthal; furthermore, theoretical studies suggest that the field resides mainly in the 
convective overshoot zone, a thin mildly subadiabatic region (R,  < 0) sandwiched 
between the radiative zone below and the convection zone above. The field is 
maintained against dissipation by dynamo action; on occasion, it escapes and rises 
to the surface where it erupts to form magnetic active regions and sunspots. The 
distribution of magnetic field through the overshoot zone, and its escape into the 
convection zone, are regulated by magnetic buoyancy instabilities. It is well-known 
that magnetic fields tend to be unstable if B / p  decreases upwards; what we have 
established is that finite-amplitude instability can occur if B / p  increases with height. 
Thus any variation is likely to promote magnetic buoyancy instabilities, 
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The key feature behind the unusual phenomenon of steady convection with two 

stabilizing gradients is the formation of narrow magnetic boundary layers and their 
influence on the convective stratification. In the Sun the boundary conditions are, of 
course, less clear cut than in our idealized model. Nonetheless, horizontal boundaries 
of a kind do exist; the lower boundary condition on the field comes from an abrupt 
increase with depth in the subadiabatic gradient, the upper boundary of the field is 
determined by the nature of the magnetic flux expulsion from the turbulent convection 
zone above. There is thus potential for the formation of magnetic boundary layers 
and, if B / p  increases upwards (& > 0), for steady convection of the type we have 
been discussing. The effect of such convection would be to modulate the distribution 
of the field with depth by preventing the field gradient exceeding a threshold value. 
Almost certainly though, instabilities driven by two stabilizing gradients are not 
the whole story. For example, instabilities of the salt-fingering type are possible 
if B / p  decreases with height (R,  < 0, & < 0). Indeed, where the magnetic field 
decreases sharply at the upper boundary of the overshoot zone there is potential for 
an extreme version of such an instability, with magnetic gas supporting less dense 
non-magnetic gas (a magnetic Rayleigh-Taylor instability). The nonlinear evolution 
of this instability has been studied both in two dimensions (Cattaneo & Hughes 1988; 
Cattaneo, Chiueh & Hughes 1990) and, very recently, in three dimensions (Matthews, 
Hughes & Proctor 1995). The latter calculation, in particular, seems capable of 
explaining certain features of the formation of magnetic active regions. A full theory 
must of course account not only for the whole range of possible magnetic buoyancy 
instabilities but also for the generation of the field by dynamo action. 

We are very grateful to Dr D.R. Moore for providing us with the computer 
code used to obtain the results of $5, and for subsequent numerical advice. We 
should also like to thank Dr M.R.E. Proctor and Professor J. Toomre for helpful 
discussions on double-diffusive convection. This work was supported in part by 
NASA through grants NSG-7511, NAGW-91 and NAG5-513, by the SERC (and its 
successor PPARC), by the Nuffield Foundation and by Trinity College, Cambridge. 

Appendix A. Derivation of (2.19) and (2.20) 
For descriptive purposes it is natural to choose the fields B / p  and pp-y, since it 

is the gradients of these quantities that are responsible for driving convection driven 
by magnetic buoyancy (see equation (1.4)). Furthermore, this description is the most 
economical, involving just the Rayleigh numbers and the diffusivity ratios CT, z. If, for 
example, we wished to calculate the distribution of B (rather than B / p )  then it would 
be necessary to specify, in addition, the initial stratification of B. 

First, decompose B and p into sums of their equilibrium and perturbation compo- 
nents: 

B = Bo(1 - c z / d )  + b, (A 1) 
Since, in the Boussinesq approximation, the layer depth d is assumed much smaller 
than all relevant scale heights, then 151, 151 << 1. Thus 

P = Po(1- r z / 4  + 6 P  - 

- _  B - Bo( 1 - c z / d  + b/Bo) NN ”( 1 - - 52 + - 5z + - b - 2). 
(A2) 

P Po(1 - Cz/d + GP/Po) Po d d Bo PO 

The perturbation in the total pressure is assumed small; hence 6 p  = -6p ,  and the 
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perfect gas law becomes 

all three terms being of comparable size. Thus comparing, in order of magnitude, the 
final two terms in expression (A2), we find that 

where V i  = Bo2/,uopo is the square of the Alfvkn speed and V i  = p o / p o  is the square 
of the isothermal sound speed. In the Boussinesq approximation the speed of sound 
is much greater than that of any other wave; hence V; << V i  and Gp/po is negligible 
in comparison with b/Bo. Hence, from (A2), 

After a suitable rescaling we obtain the following dimensionless form for B / p :  

B / p  = const. + &(z - C).  

Xb = sgn(Rb)[z - c1. 

(A 6 )  

(A 7) 

Hence, to illustrate the variation in B/p ,  we choose to use the variable Xb, defined by 

In a similar fashion, 

After rescaling we obtain the following dimensionless expression : 

(i I :) Rbc + @ (YRt + (' - ')&) . P - = const. - yRtz + - 
PY 

(A 10) 

Thus, to illustrate the variation in pp-7 we introduce the variable xP, defined by 

Appendix B. Changing the lateral boundary conditions 
Our main aim in this paper has been to identify, and then to explain, the unusual 

behaviour that can arise in a system with stabilizing magnetic and entropy gradients. 
To achieve this end we have adopted the simplest possible configuration - two- 
dimensional motions with the impermeable lateral boundary conditions (2.7) and the 
imposition of point-symmetry. Nevertheless, it is of some interest to examine how 
the picture is changed by relaxing these constraints. In particular, we shall here 
consider the effects of simultaneously admitting solutions that lack point-symmetry 
and introducing periodic lateral boundary conditions, thereby allowing flow across 
the boundaries. Solving equations (2.3)-(2.5) then requires a completely different code 
and we are deeply grateful to Dr D.R. Moore for modifying his program to deal 
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FIGURE 12. Horizontally averaged Xb and x p  as functions of height, for the 

solution shown in figure 11 (Rt = -1000, & = 75000). 

with this more general configuration. This is now a fairly expensive computational 
task: for the same resolution, four times as much storage is needed with periodic 
boundary conditions as for symmetric solutions with boundary conditions (2.7) and 
we therefore need 384 x 128 grid points. Consequently we have not attempted to 
investigate large regions of parameter space; instead we have examined the solutions 
at a fixed value of & (& = 75000) and a few values of &. 

For thermosolutal convection it is well-known that standing waves are unstable 
and travelling waves are stable near the initial Hopf bifurcation (Bretherton & Spiegel 
1983; Knobloch et al. 1986). Moreover, the branch of travelling waves joins the upper 
portion of the steady branch well beyond the turning point, at & = RZw, so that 
the steady solution is only stable for & > Rzw > RP (e.g. Moore & Weiss 1990). 
We find that the steady solutions in the convectively stable quadrant (with I? < 0) 
are indeed unstable. Even when Rt = 10000 (convectively unstable) the preferred 
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solution is a travelling wave, propagating without change of form. As R, is reduced, 
the travelling wave becomes modulated by an oscillation in the solutal (or magnetic) 
boundary layer. For R, = -1000 (and hence in the interesting stable-stable quadrant) 
the solutal Nusselt number N,  varies between a maximum of 30.3 and a minimum of 
7.9; there is much less variation in the thermal Nusselt number N,, which oscillates 
between 6.47 and 6.15. (For the corresponding steady solution, which is now unstable, 
N ,  = 46.7 and N ,  = 6.08.) Figure 11 shows the horizontally averaged temperature 
and salinity distributions at those times when N ,  is at its maximum and minimum. 
There is a marked variation in the thickness of the pulsating solutal boundary layers 
whereas any differences in the thermal boundary layers are too small to perceive. The 
corresponding profiles of B / p  and pp-? are shown in figure 12. The most interesting 
feature of the figure is that, when N, is maximized, the influence of the magnetic 
boundary layer on the distribution of pp-? is precisely the same as for the more 
restricted steady solutions discussed in detail above; i.e. extremely stable boundary 
layers are formed, with an unstable entropy gradient in the bulk of the cell. When N,  
is small, and the solutal (magnetic) boundary layers are thick, there is relatively little 
variation in pp-Y with depth. 

We may thus conclude that the unusual physical mechanism that we have identified 
is still of importance when the lateral boundary conditions are changed. With periodic 
boundary conditions, vigorous convection still takes place (in the form of modulated 
travelling waves) with the entropy gradient determined (at least during much of the 
oscillations) by the magnetic boundary layers. 
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